
C. F. Reilly and A. Prasad, “Including Computer Systems Assignments in Introductory
Programming Courses”

Accepted to the 2021 IEEE Frontiers in Education Conference (FIE).
https://www.fie2021.org/
Paper	will	be	presented	at	and	published	in	the	proceedings	of	the	conference	in	October	
2021.	
	
	

Including Computer Systems Assignments in
Introductory Programming Courses

Christine F. Reilly
Computer Science Department

Skidmore College
Saratoga Springs, New York, USA

creilly@skidmore.edu

Aarathi Prasad
Computer Science Department

Skidmore College
Saratoga Springs, New York, USA

aprasad@skidmore.edu

Abstract—This Research to Practice Work In Progress paper
describes initial work on designing and deploying programming
assignments that focus on computer systems topics in introduc-
tory computer science courses. This work builds upon the body
of prior work that has found that using real-world problems in
introductory courses improves student engagement and helps stu-
dents in the process of developing their professional identity. The
setting for this research is a liberal arts college where the major
has been designed to support the liberal arts mission of providing
students with opportunities to pursue a variety of interests. By
including computer systems topics in the introductory courses we
are able to increase breadth while maintaining a relatively small
number of required courses for the major. The four assignments
described in this paper focus on the computer systems areas
of operating systems, networks, and database systems. Informal
feedback and instructor reflection from the initial deployment of
these assignments indicates that students are engaged with these
assignments. Future work includes a formal assessment of this
approach.

Index Terms—computer science, introductory course, assign-
ments, computer systems

I. INTRODUCTION

In this Research to Practice Work-in-Progress paper we
describe initial work on designing and deploying programming
assignments that focus on computer systems topics in introduc-
tory computer science courses. The topics of these assignments
are from the computer systems areas of operating systems,
networks, and database systems. Incorporating assignments
that focus on computer systems topics builds upon the body
of prior work that has found that using real-world problems in
introductory courses improves student engagement and helps
students with professional identity formation.

There are two primary motivations for bringing these com-
puter systems topics into the introductory course assignments.
First, these assignments are deployed at a liberal arts college
where the computer science major has a relatively small num-
ber of required classes. The computer systems electives are
not necessarily offered every year, and students may choose to
take other computer science topics as their elective courses. By
bringing computer systems topics into the introductory course
assignments, the students have an opportunity to gain exposure
to these topics regardless of the elective courses they take
later in their studies. Including computer systems topics in the
introductory course assignments is a way to increase breadth

in the major while maintaining a small number of required
courses and supporting the liberal arts mission of providing
students with the opportunity to pursue a variety of interests
during their college studies.

The second motivation is an observation that students,
and the general public, often think that computer science is
programming and that computer scientists’ work is to write
application programs. Including systems topics assignments
in the introductory courses provides computer science majors,
as well as students from other majors who are taking the
programming courses, with examples of the types of problems
that computer scientists focus on.

A goal of presenting this work as a work-in-progress
paper is to obtain feedback on this initial work and to
seek additional collaborators. Long term goals of this project
include expanding the range of assignment topics to include
areas of computer science beyond computer systems. With
collaborators who have a variety of expertise, we will create
a library of assignments that focus on a broad area of com-
puter science specialties, providing a useful resource to the
community. We also welcome collaborators with experience in
education research who are interested in formally evaluating
the outcomes of these assignments.

II. RELATED WORK

Professors who teach introductory computer science courses
have long been encouraged to design engaging assignments
that focus on real world problems. One approach for design-
ing engaging assignments is to use games as the topic of
the assignment [1]–[4]. Another approach is to incorporate
more advanced computing concepts, such as network pro-
gramming [5], into introductory course assignments. There
are repositories of engaging assignments that faculty can
reference [6], including ones that have been peer-reviewed and
meet best practices for student engagement [7].

Research on professional identity formation has found that
coursework is one of the ways that students learn about careers
in the computing profession. Because students typically form
their professional identity around the third year of a four year
undergraduate program, it is important to provide opportunities
for students to learn about different areas of computing and ca-
reer possibilities during the first two years of the program [8].

In the early undergraduate years, many students view computer
science as a field that focuses on creating smaller digital
artifacts, and students who do not feel that they fit in with this
focus often leave the program [9]. Having discipline-specific
courses early in the program combined with explanations of
why students are learning a topic and how they will use this
knowledge in their future work is helpful for encouraging
professional identity formation in computing disciplines [10].
Diversity in computer science may be improved by programs
providing guided opportunities for students to learn about and
value the breadth of types of work that is done by computing
professionals, especially when these learning opportunities are
placed in the early years of the program [9].

Computer science programs at liberal arts colleges face a
variety of challenges related to providing breadth and depth
in the major [11], [12]. Due to having a small number of
faculty members, these programs typically have limited course
offerings. The computer science course offerings may be
further limited when departments are also offering courses that
fulfill the college’s liberal arts requirements such as first year
seminar courses, writing courses, and other broader liberal
arts courses. Faculty who teach introductory computer science
courses at a liberal arts college often need to be creative in
designing a course that meets the needs of students who intend
to major in computer science as well as students from other
majors who take one or two computer science courses as part
of the liberal arts philosophy of exploring a variety of areas
in their studies [13].

III. CONTEXT

This study is conducted at a liberal arts college in the North-
east United States. The college enrolls 2,500 undergraduate
students. In recent years, there have been approximately 20
students per graduating class who major in computer science.
The Computer Science department has five full time faculty
members: two tenured faculty, two tenure-track faculty, and
one lecturer.

The Computer Science (CS) department and major are
similar to the median liberal arts computer science program
as described in [11]. 40% of the credit hours required for
graduation are courses that are required for the Computer
Science major. The CS department has designed a major that
has a relatively small number of required courses so that
students are able to take advantage of the opportunities that the
liberal arts college provides for choosing to focus their studies
on their own interests. Many CS majors participate in study
abroad, have a second major, or have one or more minors.
Some CS majors choose to take additional CS electives. At
this college, students must declare a major by the middle
of the second semester of their Sophomore year. Students
who declare a computer science major are expected to have
completed Introduction to Computer Science I (CS1) and
either have completed or be currently enrolled in Introduction
to Computer Science II (CS2) when they declare a major. It
is possible for students to declare a second major at any point
up to the first semester of their senior year.

This CS department faces the typical challenges that CS
programs at liberal arts colleges have in offering a major that
provides sufficient breadth and depth [11], [12]. In addition
to having a relatively small number of courses required for
the major, our course offerings are limited by the small size
of our faculty. We address these challenges by creatively
designing courses with learning outcomes that would be found
in multiple classes in a bigger department. For example, we
include software design in our Computer Organization course
through a semester-long Java programming project where
students build a simulated computer [14].

The work discussed in the current paper is another ex-
ample of using a single course to serve multiple purposes.
We use the assignments in the CS1 and CS2 courses to
introduce concepts from computer systems, and will expand
the assignment topics in the future to encompass additional
areas of computer science. This approach provides students
with exposure to the breadth of computer science early in
the major. As was discussed in Section II, learning about
the breadth of computer science during the early years of
an undergraduate program is expected to assist students with
professional identity formation, provide information students
can use when selecting technical electives that match their
interests, and demonstrate the connections between courses in
the major [8]–[10], [13].

Designing assignments for CS1 and CS2 courses that fo-
cus on computer systems topics diverges from much of the
prior work on using assignments to promote engagement in
introductory courses and retention in the major. The prior
work, as discussed in Section II mostly focuses on assignment
topics that students can relate to in their own lives. As part of
our future work, we will evaluate whether including computer
systems topic assignments has an impact on students’ interest
in majoring in Computer Science. We note that there are other
assignments in these courses that focus on problems outside
of computer science. Additionally, if the computer systems
topic assignments are assisting with the process of professional
identity formation then we are likely to see a positive impact
from these assignments.

IV. EXAMPLES OF ASSIGNMENTS

In this section we provide four examples of computer
systems topic assignments we have used in introductory com-
puter science courses. Table I provides a summary of these
assignments including the course learning goals demonstrated
by each assignment. These courses were offered at a liberal
arts college where there are typically between 15 and 20
students enrolled in the course. There are two introductory
courses: Introduction to Computer Science I (CS1) and Intro-
duction to Computer Science II (CS2). The CS1 course focuses
on programming concepts including conditional execution,
iteration, functions, recursion, simple data structures such as
lists, and an introduction to object oriented programming. The
CS2 course has a prerequisite of the CS1 course and focuses
on data structures and the algorithms that operate on those
data structures as well as on object oriented programming. The

data structures discussed in the CS2 course include linked lists,
stacks, queues, priority queues, heaps, graphs, trees, and hash
tables. We note that the department is currently transitioning to
a new curriculum. The CS1 class has switched from using Java
to the Python programming language, and the CS2 course is
splitting into into two courses. The CS1 assignments described
in this paper were deployed in the new version of the class that
is taught in Python, while the CS2 assignments were deployed
in the old version of the class that was taught in Java and had
a prerequisite of the CS1 Java class. In future work we will
discuss how these CS2 assignments are transitioned into the
new curriculum.

A. Database Query Processing and Data Science
In the seventh and eighth out of nine programming assign-

ments in the CS1 class, students create a simple database
using a list of lists (essentially a two-dimensional array) along
with functions that operate on this structure. The programming
skills that are the focus of these assignments are using the
list, dictionary, and tuple data structures in Python. These
assignments also incorporate concepts from throughout the
semester including iteration, recursion, and writing functions.

In Program 7, students write functions to load data from a
file into the list structure and to print the list structure. They
also write functions that mimic typical database operations
of selecting rows where one field in the row matches a
specified value, and projecting specific columns. Other func-
tions perform tasks typical of data science applications by
asking students to create a dictionary (hash table structure that
contains key value pairs) where the key is the top level domain
name as extracted from the email addresses in the database and
the value is the count of occurrences of this name, and then
to print this dictionary sorted by the the value.

In Program 8, students write two functions for selecting
a single row from the database, under the assumption that
the data for the select criteria has a unique value in each
row. One function uses the linear search algorithm, and the
other function uses the binary search algorithm. Both functions
return a tuple data structure that contains the desired row along
with the count of number of rows that are examined before the
desired row was found. Note that the code for the recursive
binary search is provided to the students. Their task is to
add code to the recursive binary search function to count the
number of rows that are examined. The provided test programs
demonstrate the better performance of binary search by show-
ing the number of rows examined when searching for the same
value using both functions. A third test program illustrates a
common computer systems performance comparison process
of calling the functions many times and finding the average
number of rows examined by each of the functions.

We received informal feedback from one of the peer tutors
who commented that the CS1 students were working on
a “cool data science” assignment. This informal feedback
indicates that this assignment topic is meeting our goal of
providing students in the CS1 course with examples of real
work done by computing professionals.

B. Memory Free List

The second of five programming assignments in the CS2
class focuses on linked lists. For this assignment, students
wrote a Java program using a doubly and circularly linked
list to simulate the memory free list that an operating system
uses to keep track of available areas of computer memory. We
chose a doubly and circularly linked list so that the assignment
requires students to implement a linked list structure that has
differences from the linked lists that are discussed in class and
in the textbook.

In this assignment, students create the FreeList class based
on the provided specifications. The doubly and circularly
linked list is represented as a collection of nodes where each
node has a reference to its previous and next nodes. Instead
of having a reference to the head or tail of the list, the class
contains a data member that refers to the node in the list where
memory was most recently allocated. The class includes public
methods for removing memory from the free list when the
operating system allocates memory, and for adding memory
to the free list when the operating system frees memory. The
class also has the following common object oriented program-
ming methods: default constructor, parameterized constructor,
and a method that returns a string representation of the object.
Another required public method returns the number of items in
the list, providing a similar interface as other collection classes
in Java. Students are provided with a class that represents a
single node in the linked list, and with a class for the data that
is associated with each free slot in memory. Test programs
are also provided. This is a large and complex programming
assignment, and the assignment instructions provide a list of
steps to guide students through incrementally building and
testing the code.

This assignment is successful in terms of the amount of
understanding it develops about the linked list concept. In the
allocate method, students must write code for removing a node
from the list. The free method requires students to coalesce
adjacent areas of memory by combining nodes in the list.
These operations provide students with many opportunities to
practice adjusting node references to the previous and next
node. The free method and the size method require students
to write code that traverses the list.

Informal feedback from students indicated that the top
performing students in the class found this to be an interesting
and challenging programming assignment. Some of the lower
performing students in the class seemed to be overwhelmed
by the difficulty of this assignment. One change we are
considering for the future is specifying different names for
the methods that modify the free list. Some students found
the names of these methods confusing because the names are
related to the operating system’s actions not to the actions on
the list: the allocate method removes memory from the free list
to allocate to the operating system, and the free method adds
memory to the free list when memory is freed by the operating
system. We will also modify the test code by adding smaller
scale tests that provide additional scaffolding for students who

TABLE I
EXAMPLES OF COMPUTER SYSTEMS PROGRAMMING ASSIGNMENTS IN INTRODUCTORY CS COURSES

Assignment Course Course Learning Goals
Database Query Processing
and Data Science

CS1 Use of simple data structures (lists, dictionary, tuples); Understanding of linear and binary search algorithms.

Memory Free List CS2 Implementation of linked lists; Object oriented programming.
Process Scheduler CS2 Implement priority queue as array of queues; Appreciate how data structures can be used together; Object

oriented programming.
Routing Algorithms CS2 Implement graphs, hash table, and heaps; Understand the use of multiple data structures to solve a problem;

Choose the most efficient data structure for a specific problem.

are struggling with the size and complexity of this assignment.

C. Priority Scheduler

The fourth of five programming assignments in the CS2
class focuses on priority queues. For this assignment, students
use an array of queues to simulate a priority job scheduler that
an operating system uses to choose a process to run.

In this assignment, students create a Process class consisting
of three fields: name, runtime and priority. They also write
a Scheduler class to simulate the scheduling algorithm. The
scheduling algorithm in this assignment is implemented using
five public methods. An add method takes a Process object
as a parameter and places it at the scheduler-defined highest
priority. The run method uses three integer variables that act
as timers to keep track of boost time, the time slice, and the
runtime of the process. If the runtime reaches zero before the
time slice, it is removed from the scheduler, otherwise the age
method is invoked to move the Process object to a different
queue. Students also implement a boost method, which is
invoked when the boost timer reaches zero.

In terms of course learning goals, this assignment was
successful since the students revisited the concepts of arrays
that they learned in the CS1 class and queues that they learned
earlier in this CS2 class. They also expanded their object
oriented programming skills by writing a program that utilizes
multiple Java classes and experienced how one object can use
an object of a different class by calling its public methods.

Informal feedback indicated that the top students found the
assignment to be interesting, while others found the assign-
ment to be confusing, especially the use of integer variables
as timers. In the future, we will improve the test program that
is provided to students by adding smaller scale tests that will
provide additional scaffolding to assist students with managing
the complexity of this assignment.

D. Routing Algorithm

The last of five programming assignments in the CS2 class
focuses on graph algorithms. For this assignment, students
implement shortest path algorithms for both weighted and un-
weighted graphs. Routing algorithms are a computer systems
topic that illustrates these concepts.

In this assignment, students create a Graph class and a
NetworkNode class. The NetworkNode class contains a hash
table that stores the next-hop nodes for every other node in
the network. Given a destination node the hash table provides

the next node to send the message to. The students write code
using Dijkstra’s algorithm to populate the next hop table in
the NetworkNode object.

This assignment meets the learning goal of a final as-
signment in the CS2 course that demonstrates the use of
three different data structures: a graph, a heap used as part
of the implementation of Dijkstra’s algorithm, and a hash
table that stores the next hop values. By working with these
three complex data structures, students gain experience with
choosing the most efficient data structure for a given scenario.
Additionally, this assignment introduces the concept of routing
algorithms. The assignment information discusses how routing
algorithms are utilized for multiple applications including
routers and hosts on the Internet, and in computer applications
such as location-based services.

V. DISCUSSION AND CONCLUSION

This work in progress paper presented the motivation for
including computer systems topic assignments in introductory
computer science courses and described four assignments that
we have deployed in our courses. These assignments are a
novel approach for adding breadth in the early part of a CS
major. Based on informal feedback from students and our
reflections, these assignments are meeting the course learning
goals. One lesson we have learned from the initial deployment
of these assignments is that the complexity of the computer
systems topics requires us to include small scale tests that
provide scaffolding to assist students in understanding how to
accomplish the tasks required in these assignments.

The next step in this project is to design a formal assessment
that can measure whether these computer system topic assign-
ments are assisting with professional identity formation. The
prior work on computer science professional identity forma-
tion has been conducted at larger universities. An interesting
research question is how professional identity formation at
our liberal arts college compares with that of students at
larger universities. Another interesting research question is the
impact of these computer systems topic assignments on the
engagement and retention of students from populations that
are underrepresented in computing.

ACKNOWLEDGMENTS

Thank you to the Skidmore College students in our CS106
and CS206 classes who provided helpful feedback about these
assignments.

REFERENCES

[1] J. D. Bayliss and S. Strout, “Games as a ”flavor” of CS1,” in SIGCSE
2006, 2006.

[2] P. Drake and K. Sung, “Teaching introductory programming with
popular board games,” in SIGCSE 2011, 2011.

[3] C. F. Reilly and N. De La Mora, “The impact of real-world topic labs on
student performance in CS1,” in 2012 Frontiers in Education Conference
Proceedings, 2012.

[4] K. Sung, M. Panitz, S. Wallace, R. Anderson, and J. Nordlinger, “Game–
themed programming assignments: The faculty perspective,” in SIGCSE
2008, 2008.

[5] M. H. Goldwasser and D. Letscher, “Introducing network programming
into a CS1 course,” SIGCSE Bull., vol. 39, no. 3, pp. 19–22, jun 2007.

[6] N. Parlante, J. Zelenski, A. A. de Freitas, T. B. Weingart, K. Schwarz,
B. Stephenson, and S. Bitner, “Nifty assignments,” in Proceedings of
the 52nd ACM Technical Symposium on Computer Science Education,
2021.

[7] A. E. Monge, C. L. Fadjo, B. A. Quinn, and L. J. Barker, “En-
gageCSEdu: Engaging and retaining CS1 and CS2 students,” ACM
Inroads, vol. 6, no. 1, pp. 6–11, Feb 2015.

[8] A. Kapoor and C. Gardner-McCune, “Understanding CS undergraduate
students’ professional identity through the lens of their professional
development,” in Proceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Education. Association
for Computing Machinery, 2019, pp. 9–15.

[9] A.-K. Peters, “Students’ experience of participation in a discipline—a
longitudinal study of computer science and IT engineering students,”
ACM Transactions on Computing Education, vol. 19, no. 1, Sep 2018.

[10] G. M. Lundberg and I. J. Ness, “First year students’ imagination of
future employment: Identity as an important employability aspect,” in
Proceedings of the 9th Computer Science Education Research Confer-
ence. Association for Computing Machinery, 2020.

[11] D. Baldwin, A. Holland-Minkley, and G. Braught, “Report of the
SIGCSE committee on computing education in liberal arts colleges,”
ACM Inroads, vol. 10, no. 2, 2019.

[12] S. G. M. Koo, “Computer science curriculum in a liberal arts setting:
Case studies at the University of San Diego,” in Proceedings of IEEE
International Conference on Teaching, Assessment, and Learning for
Engineering (TALE) 2012, 2012.

[13] A. Brady, P. Cutter, and K. Schultz, “Benefits of a CS0 course in liberal
arts colleges,” Journal of Computing Sciences in Colleges, vol. 20, no. 1,
October 2004.

[14] C. F. Reilly and J. A. Swanson, “A case study in constructivist pedagogy
in a computer organization course,” in 2019 IEEE Frontiers in Education
Conference (FIE), October 2019.

